

Amir Mirzanejad

<https://www.mirzanejad.com>

POSITIONS

Louisiana State University Shreveport	<i>Assistant Professor of Chemistry</i>	<i>August 2025 – Present</i>
Pennsylvania State University	<i>Postdoctoral Researcher</i>	<i>September 2022 – June 2025</i>

EDUCATION

University of Nevada, Reno	<i>Ph.D. Chemistry</i>	<i>August 2017 – August 2022</i>
Supervisor: Dr. Sergey Varganov		
Thesis: Quantum Mechanical Study of Spin-Forbidden Reactions in Organometallic Catalysis and Astrochemistry		
Sharif University of Technology	<i>M.Sc. Physical Chemistry</i>	<i>September 2009 – November 2011</i>
Urmia University	<i>B.Sc. Applied Chemistry</i>	<i>September 2005 – May 2009</i>

RESEARCH

Louisiana State University Shreveport	<i>Assistant Professor</i>	<i>August 2025 – Present</i>
• Quantum mechanical and molecular dynamics exploration of chemical and biochemical reactions		
Pennsylvania State University	<i>Postdoctoral Research</i>	<i>September 2022 – June 2025</i>
• <i>Ab initio</i> static and molecular dynamics exploration of ground and excited state potential energy surface of electrocyclic reactions		
– Revealed hidden reaction bifurcations in Cope rearrangements using multi-reference quantum chemistry, enabling accurate product outcome prediction beyond commonly used single-reference DFT.		
– Developed a novel approach that allows ground state formation of photochemical (excited state) electrocyclic products, opening new pathway for synthesis of thermally inaccessible stereoisomers.		
– Research Awarded DE-SC0025352		
University of Nevada, Reno	<i>Graduate Research</i>	<i>August 2017 – August 2022</i>
• Chemical kinetics code development – Funded by NSF CHE-1654547		
– Developed a code in Python/Fortran implementing Phase Space and RRKM chemical rate theories for non-adiabatic barrierless reactions.		
• Identification of reaction mechanism for unusually low-temperature C-H bond activation – Funded by ACS PRF-60481-ND6		
– Unveiled the mechanism of a previously unknown Fe(II)-catalyzed $C(sp^2)$ -H bond activation reactions in THF solvent using DFT (ω B97X-D, B3LYP, MN15-L) and wavefunction (MP2, DLPNO-CCSD(T) and CCSD(T)) methods.		
• Electronic structure theory development – Funded by ACS PRF-60481-ND6		
– Developed an atomic model for deriving the Morse interatomic potential function. Introduced a quantum-based framework for estimating empirical parameters in the Morse potential from tabulated data that contributes to the development of reactive force fields and basis sets for electronic structure calculations.		
• Mechanistic study of reactions under extreme interstellar condition – Funded by NSF CHE-1654547		
– Identified the 14th member in the C_2H_5NO family of molecules and a new functional group.		
– Revealed spin-forbidden mechanisms using high-level quantum chemistry methods to explain the formation of acetamide and N-methyl-formamide in the interstellar space. Also predicted the formation of acetimidic acid that helps future astronomical observation to reveal this molecule in space.		

PUBLICATIONS

Peer-Reviewed Journal Papers

1. **A. Mirzanejad**, L. Muechler, "Computational Evidence of a Bifurcation in a Cope Rearrangement Proximate to a Forbidden Electrocyclization" <https://doi.org/10.26434/chemrxiv-2025-0xsfn>.
2. **A. Mirzanejad**, L. Muechler, "Converting Second-order Saddle Points to Transition States: New principles for the Design of 4π Photoswitches" *ChemPhysChem* (2024), e202400786.
3. **A. Mirzanejad**, S. A. Varganov, "Two-State Spin-Forbidden Formation of Amide Molecules in the Interstellar Medium" *ACS Earth Space Chem.* (2025) 9, 4, 789–794.
4. **A. Mirzanejad**, S. A. Varganov, "Derivation of Morse Potential" *Mol. Phys.* (2024) e2360542.
5. J. Li, **A. Mirzanejad**, W.-H. Dong, K. Liu, M. Richter, X.-Y. Wang, R. Berger, S. Du, W. Auwärter, J. V. Barth, J. Ma, K. Müllen, A. Narita, X. Feng, J.-T. Sun, L. Muechler, C.-A. Palma "Topological classification of cycloadditions occurring on-surface and in the solid-state" *Communications Chemistry* (2025) 388. (Three first authors contributed equally)
6. I. D. Dergachev, V. D. Dergachev, M. Rooein, **A. Mirzanejad**, S. A. Varganov, "Predicting Kinetics and Dynamics of Spin-Dependent Processes" *Acc. Chem. Res.* 56 (2023) 856-866.
7. **A. Mirzanejad**, S. A. Varganov, "The Role of Intermediate Triplet State in Iron-Catalyzed Multi-State C-H Activation" *Phys. Chem. Chem. Phys.* 24 (2022) 20721-20727.
8. M. Elahifard, M. Sadrian, **A. Mirzanejad***, R. Behjatmanesh-Ardakani, S. Ahmadvand, "Dispersion of Defects in TiO_2 Semiconductor: Oxygen Vacancies in the Bulk and Surface of Rutile and Anatase" *Catalysts* 10 (2020) 397.
9. S. Ahmadvand, M. Elahifard, M. Jabbarzadeh, **A. Mirzanejad***, et al. "Bacteriostatic Effects of Apatite-Covered $\text{Ag}/\text{AgBr}/\text{TiO}_2$ Nanocomposite in the Dark: Anomaly in Bacterial Motility" *J. Phys. Chem. B* 123 (2019), 787-791.
10. M. Elahifard, S. Ahmadvand, **A. Mirzanejad***, "Effects of Ni-doping on the Photo-catalytic Activity of TiO_2 Anatase and Rutile: Simulation and Experiment" *Mater. Sci. Semicond. Process.* 84 (2018) 10-16.
11. **A. Mirzanejad**, "Thermal Chemistry of 2-Halo-1-propanols on Ni(111) and Cu(111) Surfaces: A UBI-QEP Energetic Modeling" *Appl. Surf. Sci.* 359 (2015) 576-588.

UNDER REVIEW PAPERS

1. Z. Xie, **A. Mirzanejad**, L. Muechler "Topological Transitions in Orbital-Symmetry-Controlled Chemical Reactions" <https://doi.org/10.48550/arXiv.2506.18984>

TEACHING

Textbook Authorship

- "Fundamentals of Physical Chemistry", Author (in Persian), Urmia University.
 - A concise and comprehensive textbook covering all undergraduate physical chemistry courses spanning essential concepts in thermodynamics, phase equilibrium, electrochemistry, chemical kinetics, quantum mechanics, and molecular spectroscopy.

Louisiana State University Shreveport

August 2025 - Present

- Instructor: General and Physical Chemistry
- Instructor: General and Physical Chemistry Lab

Pennsylvania State University

March 2023, April 2024

- Guest Instructor: PhD Quantum Chemistry
 - Geometry Optimization Techniques
 - Basis Sets

*Indicates equal contribution of all authors.

University of Nevada, Reno

August 2017 – May 2019

- Teaching Assistant: General Chemistry Labs 121 and 122
 - Led two semiweekly lab-lecture sections (4-hours each) and held weekly office hours (2-hours); created pre-lab quizzes and lab finals; graded lab assignments and pre-lab quizzes and finals

Urmia University

September 2007 – June 2008

- Teaching Assistant: Physical Chemistry and Analytical Chemistry
 - Led weekly homework assignments review class (2-hours) and created homework questions

SKILLS

Programming:	Python, Fortran
Quantum Software & Tools:	Gaussian, GAMESS, Orca, Q-Chem, Molpro, Multiwfn, Multiwell

AWARDS & HONORS

- PCCP HOT Article, *Journal of Physical Chemistry Chemical Physics*, 2022
- GSA Research, Travel and Materials Grant Award, University of Nevada, Reno, Fall 2021
- Hyung Kyu Shin Graduate Scholarship, Chemistry Department, University of Nevada, Reno, 2021
- 3rd Place, The Bay Area Theoretical Chemistry Lightning Talk Competition, Stanford University, 2021
- American Chemical Society paper of the day, Editors' first choice from the entire ACS portfolio, 2019
- Gene and Carla LeMay Scholarship, Chemistry Department, University of Nevada, Reno, 2018

PRESENTATIONS

1. **A. Mirzanejad**, L. Muechler, “**Oral**: Multi-Reference Approaches Unveil Electrocyclization Bifurcations in Cope Rearrangements” *ACS Spring National Meeting*, New Orleans, 17 - 21 March 2024.
2. **A. Mirzanejad**, C. Daggett, Z. Xie, L. Muechler “**Poster**: Topological Classification of Chemical Reactions: A New Tool to Understand and Manipulate Chemical Reactivity” *Materials Day 2023*, State College, 26 - 27 October 2023.
3. **A. Mirzanejad**, L. Muechler, “**Poster**: Molecular Geometry, Not Orbital Overlap Determines Stereochemistry of Electrocyclic Reactions” *Physical Organic Chemistry Gordon Research Conference*, Holderness, June 25 - 30, 2023.
4. **A. Mirzanejad**, S. A. Varganov, “**Poster**: Multi-State Reactivity in Iron-Activated C–H Bond” *American Conference on Theoretical Chemistry (ACTC)*, Palisades Tahoe, July 25 - 28, 2022.
5. **A. Mirzanejad**, S. A. Varganov, “**Oral**: Iron-Catalyzed Multi-State Activation of C(sp^2)-H Bond” *ACS Spring 2022 National Meeting*, San Diego, March 20 - 24, 2022.
6. D. S. Kaliakin, **A. Mirzanejad**, A. J. Pohlman, S. M. Casey, S. A. Varganov, “**Oral**: Role of Electron Spin in Catalytic Reaction Mechanisms” *Synergies between Theory, Experiment and Data Science towards Clean Energy*, 2020.
7. **A. Mirzanejad**, S. Ahmadvand, S. A. Varganov, “**Poster**: Spin-Forbidden Formation of Amide Molecules in the Interstellar Medium” *AbGradCon 2019*, Salt Lake City, July 22-26, 2019.
8. **A. Mirzanejad**, S. Ahmadvand, S. A. Varganov, “**Poster**: Computational Modeling of C_2H_5NO Isomers Formation in the Interstellar Medium” *AbGradCon 2018*, Atlanta, June 04 - 08, 2018.